UTILIZATION OF DRONES AND SCANNING TECHNOLOGY IN REMEDIATION AND REDEVELOPMENT

October 16, 2019

Bret Stuntz – Senior Consultant Bret Hart – Manager, Design Services

Presentation Overview

- Current uses at SME
- Commercial Drone Technology
- 3D Laser Scanning
- Questions?

COMMERCIAL SUAS (DRONE) TECHNOLOGY

What is an sUAS?

sUAS = "small Unmanned Aerial System"

- Under 55 lbs aircraft and payload
- 14 CFR Part 107 Regulated for commercial use
- Section 333 Exemption for drones over 55 lbs
- Includes VTOL (vertical take-off and landing) and fixed-wing drones

Imaging Sensors

- Visible Light (camera)
 - o Stills
 - o Video
- Thermal
- Light Detection and Ranging (LIDAR)
- Multispectral

Why Are We Talking About Them?

The Three Waves of the Drone Economy

MARKET EVOLUTION

Diverse Applications

- Photogrammetry
- LiDAR scanning
- Volumetric scans
- Repeatable & safer inspections

Flight Control – Drone Deploy & Pix4D

Equipment Cost Lowering / Tech Improving

DJI Mavic 2 Pro (\$2,500 with iPad/case/accessories)

What can they do? - Good...

What can they do? - Good...

What can they do? - Better...

What can they do? - Better...

4/23/17

During Today's Site Visit

What can they do? - Better...

4/23/17 During Today's Site Visit

Technical Considerations

Higher Resolution

o Pros

- More accurate data
- Better photo quality
- o Cons
 - Longer flight time
 - More batteries consumed
 - More GCP's set = more field work

• Accuracy

 \circ 100' AGL = ±0.10" \circ 200' AGL = ±0.20"

Crushed Concrete Volume Survey – Plan View

Crushed Concrete Volume Survey

Case Study – Former AMC Headquarters

Stockpile Topographic Survey

SME 18

Topographic Survey and Stockpile Quantities

Available Deliverable Formats

- Ortho-Images
- Point Cloud
- AutoCAD ".dwg" files
- Conceptual Renderings
- Geo-Referenced PDF with project specific CAD overlays

Landfill Design & Operation

- Operational
 - Measure compaction rates
 - o Perform volume & airspace calculations
 - Ensure that landfill is being built as designed
- Maintenance
 - o Topographic surveys
 - Identify areas of erosion, low soil coverage, standing water
 - o Methane monitoring

3D LASER SCANNING

3D Laser Scanning

Scanning Opportunities:

- Volumetric Surveys
- Building and Façade Evaluations
- Tank Calibration/Inspection
- Power Line Inspection/Clearance
- Utility Design Surveys
- Mine/Quarry Surveys
- Excavation Surveys

Technical Specifications

- Point Spacing
 - o 6.25mm, 12.5mm, 25mm or 50mm @ 50m
- Accuracy
 - o 3D Position Accuracy @ 100m = 2.5mm

Scanning Total Station

Trimble SX10

- Higher cost
- Up to 600m range
- Accurate to 14mm at 100m
- Scans 26,600 points per second

3D Laser Scanning

Laser Scan and Conventional Survey Data

3D Laser Scanning

Laser Scan and Conventional Survey Data

640 Temple Street Detroit, Michigan

640 Temple Street – Rooftop 3D Laser Scan

28

640 Temple Street – Rooftop Topo Survey

Remedial Excavations

- Tracking excavation progress
- Mapping sample points
- Oversight on material removal

Managing a Project? Some things to consider..

- Equipment
- Proximity of the Project Site to:
 - o "No Fly" Zones
 - o Pedestrian or vehicle traffic
- Weather
 - Seasons (winter would be bad for flying because of turbulent, thin cold air and higher winds.
- Staffing
 - o Training and bill rates
 - o Project planning
 - o Time on site to perform the necessary preliminary work
 - o Time in the office to perform necessary post processing
 - Dedicated staff to act as operator when necessary
- 2:1 ratio of office to field time.
 - Processing higher quality grade data is ideal because it minimizes field time and maximizes the return.
 - The cost of that is that much more time is needed in the office to sort through the data and make it usable.

SME

Limitations

- Controlled Airspace FAA Regulations
- Part 107 Limitations
 Beyond VLOS, daylight, not over people
- Regulatory interpretations
- Differing safety concerns
- Privacy concerns
- Weather
 - Time of day (mid-day is best)
 - o Conditions (visibility, cloud cover, snow, rain, fog)
 - Winter months = poor conditions
- Batteries!!!
- Personnel Need to be FAA Certified or under direct supervision

Questions?

