OLD BUSINESS

1. Approval of the July 2, 2009, Meeting Minutes – G. Johnson

The July 2, 2009, meeting minutes are approved.

NEW BUSINESS

1. Americans with Disabilities Act (ADA) Transition Plan – C. Libiran

The ADA of 1990 dictates comprehensive civil right protections to individuals with disabilities in several different areas, including public services (Title II). Provisions in Title II encompass areas of public transportation, and the updating of infrastructure to attain accessibility and consistency with the ADA. A provision in the regulations also requires state and local governments to prepare transition plans to achieve compliance, which MDOT did in 1994. The 1994 transition plan focused on buildings and in general, did not address facilities within the right-of-way, such as sidewalk ramps.

Since the implementation of the 1994 transition plan, increasing emphasis has been placed on accessibility of infrastructure within public right-of-way, and connectivity of this infrastructure to state trunkline roadways, in particular the continued integration of sidewalk ramps. MDOT has incorporated sidewalk ramps into construction projects since 1973, and has progressively modified and updated standards addressing accessibility. However, at this time not all sidewalk ramps within MDOT right-of-way conform to the most current MDOT standards for accessibility. A statewide sidewalk ramp inventory has recently been completed for trunkline roadways to evaluate the status of compliance.

This newly developed Transition Plan addresses components not addressed in the original plan, including car pool lots, shared use paths, pedestrian activated signals, and sidewalk ramps within MDOT’s right-of-way, with focus on the upgrading of sidewalk ramps. The department will use MDOT’s Five-Year Transportation Highway Program as a basis for
planning upgrades of sidewalk ramps. As part of the rolling Five-Year Plan, pedestrian accessibility and upgrades with the right-of-way will be scoped with proposed roadway improvements. The annual Call for Projects process will require information from each region on sidewalk ramp compliance.

Approval of the MDOT 2009 ADA Transition Plan is requested.

ACTION: EOC approves the MDOT 2009 ADA Transition Plan as submitted. The annual Call for Projects process shall include instructions for each region to report the status of sidewalk ramp compliance, and projected compliance goals. Both the 1994 Transition Plan and the 2009 Transition Plan will be kept on file with MDOT’s EEO Office.

2. **Pavement Selections – B. Krom**

a. **I-696 Reconstruction: CS 50062, JN 85543**

The rehabilitation alternatives considered were a hot mix asphalt (HMA) (Alternative 1 – EUAC $198,525/directional mile) and a jointed plain concrete pavement (Alternative 2 – EUAC $128,878/directional mile). A life cycle cost analysis was performed and Alternative 2 was approved based on having the lowest EUAC. The pavement design and cost analysis are as follows:

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5”</td>
<td>Non-Reinforced Concrete Pavement, P1 Modified, w/14’ jt spacing</td>
</tr>
<tr>
<td>16”</td>
<td>Open-Graded Drainage Course</td>
</tr>
<tr>
<td>6” dia.</td>
<td>Open-Graded Underdrain System</td>
</tr>
<tr>
<td>27.5”</td>
<td>Total Thickness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Cost (directional mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Value Initial Construction Cost</td>
<td>$997,602</td>
</tr>
<tr>
<td>Present Value Initial User Cost</td>
<td>$1,286,231</td>
</tr>
<tr>
<td>Present Value Maintenance Cost</td>
<td>$101,708</td>
</tr>
<tr>
<td>Equivalent Uniform Annual Cost</td>
<td>$128,878</td>
</tr>
</tbody>
</table>

b. **US-24 Reconstruction: CS 63031, JN 84064**

The reconstruction alternatives considered were a HMA pavement (Alternative 1 – EUAC $227,973/directional mile) and a jointed plain concrete pavement (Alternative 2 – EUAC $184,381/directional mile). A life cycle cost analysis was performed and Alternative 2 was approved based on having the lowest EUAC. The pavement design and cost analysis are as follows:

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9”</td>
<td>Non-Reinforced Conc Pavt, P1 Modified w/14’ jt spacing (mainline)</td>
</tr>
<tr>
<td>6”</td>
<td>Open-Graded Drainage Course (mainline)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Cost (directional mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Value Initial Construction Cost</td>
<td>$997,602</td>
</tr>
<tr>
<td>Present Value Initial User Cost</td>
<td>$1,286,231</td>
</tr>
<tr>
<td>Present Value Maintenance Cost</td>
<td>$101,708</td>
</tr>
<tr>
<td>Equivalent Uniform Annual Cost</td>
<td>$128,878</td>
</tr>
</tbody>
</table>
c. I-94 Reconstruction: CS 38103, JN 105785

The reconstruction alternatives considered were a HMA pavement (Alternative 1 – EUAC $104,896/directional mile) and a jointed plain concrete pavement (Alternative 2 – EUAC $75,010/directional mile). A life cycle cost analysis was performed and Alternative 2 was approved based on having the lowest EUAC. The pavement design and cost analysis are as follows:

11"............................. Non-Reinforced Concrete Pavement, P1 Modified w/14’ jt spacing
5"..Stabilized Open-Graded Drainage Course
Geotextile Separator
3"...Aggregate Base Separator
Existing Sand Subbase
6" dia...Open-Graded Underdrain System
19”..Total Thickness

Present Value Initial Construction Cost.......................... $891,613/directional mile
Present Value Initial User Cost................................. $418,894/directional mile
Present Value Maintenance Cost................................. $77,937/directional mile
Equivalent Uniform Annual Cost................................. $75,010/directional mile

d. I-75 Reconstruction: CS 63174, JN 107677

The reconstruction alternatives considered were a HMA pavement (Alternative 1 – EUAC $590,180/directional mile with two lanes open, and $473,993/directional mile with a full detour) and a jointed plain concrete pavement (Alternative 2 – EUAC $498,799/directional mile with two lanes open, and $390,120/directional mile with a full detour). A life cycle cost analysis was performed and Alternative 2 was approved based on having the lowest EUAC. The pavement design and cost analysis are as follows:

11.5”............................. Non-Reinforced Concrete Pavement, P1 Modified w/14’ jt spacing
16”...Open-Graded Drainage Course
Geotextile Separator
6” dia...Open-Graded Underdrain System
27.5”..Total Thickness

Present Value Initial Construction Cost.......................... $1,338,986/directional mile
Present Value Initial User Cost w/2 Lanes Open............ $7,736,755/directional mile
e. **I-196 Reconstruction: CS 41027, JN 75547**

The reconstruction alternatives considered were a HMA pavement (Alternative 1 – EUAC $288,163/directional mile) and a jointed plain concrete pavement (Alternative 2 – EUAC $280,962/directional mile). A life cycle cost analysis was performed and Alternative 2 was approved based on having the lowest EUAC. The pavement design and cost analysis are as follows:

10.5"

- Non-Reinforced Concrete Pavement, P1 Modified w/14’ jt spacing
6"

- Aggregate Base, Modified
10"

- Sand Subbase
6” dia

- Underdrain System
26.5”

- Total Thickness

(Present Value Initial User Cost w/a Full Detour$5,725,100/directional mile)
Present Value Maintenance Cost ... $157,051/directional mile
Equivalent Uniform Annual Cost w/2 Lanes Open $498,799/directional mile
(Equivalent Uniform Annual Cost w/a Full Detour....................$390,120/directional mile)

3. **Hot Mix Asphalt Material Transfer Device – C. Bleech**

To provide a uniform HMA mat that minimizes the potential for material and thermal segregation, a MTD may be used to re-mix the HMA immediately prior to delivery into the paver hopper. Additionally, the MTD allows for continuous delivery to the paver without stopping and starting of the paver due to exchange of the delivery trucks, providing for improved ride quality. The MTD is commonly used on MDOT projects when there is incentive payment for superior ride quality. In addition, some areas of the state require the use of a Material Transfer System (MTS), which includes the use of a MTD, on most HMA paving projects.

Industry does not oppose the use of the MTD, but has asked that MDOT develop a policy on when and where a MTD will be required. The Hot Mix Asphalt Operation Committee assigned the task of developing such a policy to the Hot Mix Asphalt Technical Subcommittee. An initial meeting was held with industry and it was agreed to develop the initial policy based on the current special provision, "HMA Material Transfer System". The policy for the use of a MTD contains the following provisions for the 2010 construction season:

- A MTD must be used on all mainline paving of rehabilitation and reconstruction projects on Interstate routes, limited access U.S. routes, and limited access M routes when there is more than 10,000 tons of HMA for an individual paving course. Base course mixes
placed on a rubblized pavement or a shoulder paved separately will not require the use of a MTD.

- A MTD must be used on all Capital Preventative Maintenance projects utilizing gap graded Superpave mix that meet the 10,000 ton requirement.
- A MTD may be used on any other paving project or operation at the contractor's option.
- The use of a MTD, whether required or voluntary, will not be paid for separately.

The HMA Technical Subcommittee will identify projects in the 2010 construction season to evaluate the performance and effectiveness of the use of different types of MTDs. The policy may be modified based on the findings of the evaluation.

Approval of the policy for the use of MTDs is requested.

ACTION: The "Policy for the Use of Material Transfer Device" is approved with the provisions noted above.

The HMA Technical Subcommittee will identify projects in the 2010 construction season to evaluate different types of MTDs for effectiveness. The policy will be revised to reflect the findings of the evaluation. The committee will also look at expanding the recommended use of the MTS on future projects. A Frequently Used Special Provision (FUSP) will be developed for inclusion into the 2011 construction program. The FUSP will clearly identify criteria for the use of the MTS.

(Signed Copy on File at C&T)
Brenda J. O’Brien, Secretary
Engineering Operations Committee

BJO:kar

cc: K. Steudle S. Mortel J. Steele (FHWA)
J. Shinn D. Jackson R. Brenke (ACEC)
L. Hank W. Tansil G. Bukoski (MITA)
EOC Members D. Wresinski D. DeGraaf (MCPA)
Region Engineers C. Libiran D. Hollingsworth (MCA)
TSC Managers R. J. Lippert, Jr. J. Becsey (APAM)
Assoc. Region Engineers T. L. Nelson M. Newman (MAA)
P. Ajegba T. Phillips J. Murner (MRPA)
M. DeLong K. Peters C&T Staff
B. Shreck J. Ingle