Biochemical Oxygen Demand (BOD)

Biochemical Oxygen Demand, or BOD, is a measure of the quantity of oxygen consumed by microorganisms during the decomposition of organic matter. BOD is the most commonly used parameter for determining the oxygen demand on the receiving water of a municipal or industrial discharge. BOD can also be used to evaluate the efficiency of treatment processes, and is an indirect measure of biodegradable organic compounds in water.

Imagine a leaf falling into a stream. The leaf, which is composed of organic matter, is readily degraded by a variety of microorganisms inhabiting the stream. Aerobic (oxygen requiring) bacteria and fungi use oxygen as they break down the components of the leaf into simpler, more stable end products such as carbon dioxide, water, phosphate and nitrate. As oxygen is consumed by the organisms, the level of dissolved oxygen in the stream begins to decrease.

Water can hold only a limited supply of dissolved oxygen and it comes from only two sources - diffusion from the atmosphere at the air/water interface, and as a byproduct of photosynthesis. Photosynthetic organisms, such as plants and algae, produce oxygen when there is a sufficient light source. During times of insufficient light, these same organisms consume oxygen. These organisms are responsible for the diurnal (daily) cycle of dissolved oxygen levels in lakes and streams.

If elevated levels of BOD lower the concentration of dissolved oxygen in a water body, there is a potential for profound effects on the water body itself, and the resident aquatic life. When the dissolved oxygen concentration falls below 5 milligrams per liter (mg/l), species intolerant of low oxygen levels become stressed. The lower the oxygen concentration, the greater the stress. Eventually, species sensitive to low dissolved oxygen levels are replaced by species that are more tolerant of adverse conditions, significantly reducing the diversity of aquatic life in a given body of water. If dissolved oxygen levels fall below 2 mg/l for more than even a few hours, fish kills can result. At levels below 1 mg/l, anaerobic bacteria (which live in habitats devoid of oxygen) replace the aerobic bacteria. As the anaerobic bacteria break down organic matter, foul-smelling hydrogen sulfide can be produced.

BOD is typically divided into two parts - carbonaceous oxygen demand and nitrogenous oxygen demand. Carbonaceous biochemical oxygen demand (CBOD) is the result of the breakdown of organic molecules such as cellulose and sugars into carbon dioxide and water. Nitrogenous oxygen demand is the result of the breakdown of proteins. Proteins contain sugars linked to nitrogen. After the nitrogen is “broken off” a sugar molecule, it is usually in the form of ammonia, which is readily converted to nitrate in the environment. The conversion of ammonia to nitrate requires more than four times the amount of oxygen as the conversion of an equal amount of sugar to carbon dioxide and water.

When nutrients such as nitrate and phosphate are released into the water, growth of aquatic plants is stimulated. Eventually, the increase in plant growth leads to an increase in plant decay and a greater “swing” in the diurnal dissolved oxygen level. The result is an increase in microbial populations, higher levels of BOD, and increased oxygen demand from the photosynthetic organisms during the dark hours. This results in a reduction in dissolved oxygen concentrations, especially during the early morning hours just before dawn.

In addition to natural sources of BOD, such as leaf fall from vegetation near the water’s edge, aquatic plants, and drainage from organically rich areas like swamps and bogs, there are also anthropogenic (human) sources of organic matter. If these sources have identifiable points of discharge, they are called point sources. The major point sources, which may contribute high levels of BOD, include wastewater treatment facilities, pulp and paper mills, and meat and food processing plants.
Organic matter also comes from sources that are not easily identifiable, known as nonpoint sources. Typical nonpoint sources include agricultural runoff, urban runoff, and livestock operations. Both point and nonpoint sources can contribute significantly to the oxygen demand in a lake or stream if not properly regulated and controlled.

Performing the test for BOD requires significant time and commitment for preparation and analysis. The entire process requires five days, with data collection and evaluation occurring on the last day. Samples are initially seeded with microorganisms and saturated with oxygen (Some samples, such as those from sanitary wastewater treatment plants, contain natural populations of microorganisms and do not need to be seeded.). The sample is placed in an environment suitable for bacterial growth (an incubator at 20°Celsius with no light source to eliminate the possibility of photosynthesis). Conditions are designed so that oxygen will be consumed by the microorganisms. Quality controls, standards and dilutions are also run to test for accuracy and precision. The difference in initial DO readings (prior to incubation) and final DO readings (after 5 days of incubation) is used to determine the initial BOD concentration of the sample. This is referred to as a BOD5 measurement. Similarly, carbonaceous biochemical oxygen test performed using a 5-day incubation is referred to as a CBOD5 test.

Water Quality Standards for BOD

Although there are no Michigan Water Quality Standards pertaining directly to BOD, effluent limitations for BOD must be restrictive enough to insure that the receiving water will meet Michigan Water Quality Standards for dissolved oxygen.

Rule 64 of the Michigan Water Quality Standards (Part 4 of Act 451) includes minimum concentrations of dissolved oxygen that must be met in surface waters of the state. This rule states that surface waters designated as coldwater fisheries must meet a minimum dissolved oxygen standard of 7 mg/l, while surface waters protected for warmwater fish and aquatic life must meet a minimum dissolved oxygen standard of 5 mg/l.

Biochemical Oxygen Demand Limitations in NPDES Permits

Typically, CBOD5 limits are placed in NPDES permits for all facilities which have the potential to contribute significant quantities of oxygen consuming substances to waters of the state. These limits are developed in direct correlation with limits for ammonia nitrogen and dissolved oxygen. The nitrogenous oxygen demand is computed separately because of the difference in oxygen demand (as explained above) and because the rate of oxygen consumption over time varies from carbonaceous oxygen demand. Ammonia is further considered separately because in sufficient levels (dependant upon several variables) it can also be toxic to living organisms.

In determining CBOD5 limits, stream modelers use computer models which simulate actual stream conditions. Model inputs include the flow of the receiving stream, the quantity of water to be discharged, the decay rate for the particular type of wastewater, the stream's slope, and temperature. Other upstream or downstream dischargers are also considered in the model. The modeler determines maximum limits for CBOD5 and ammonia nitrogen and minimum limits for dissolved oxygen. These limits are selected to insure that Water Quality Standards for dissolved oxygen are met in the receiving water.